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Abstract

Purpose – To study quantitatively the effects of combined temperature dependent thermodynamics
and transport fluid properties on the heat transfer rate, heat function fields and profiles in a fluid filled
square enclosure.

Design/methodology/approach – Navier-Stokes equations in two-dimensions, which are the flow
governing equations, were transformed into stream function and vorticity transport equations. These
equations together with the energy and heat function equations were cast into their non-dimensional
forms. Numerical solutions of the resulting equations were done by the use of finite-difference method.

Findings – The numerical investigations conducted covered the Rayleigh and Prandtl numbers in
the range 103 # Ra # 106 and 0.01 # Pr # 450, respectively, and expansion parameter 1 ¼
ðTh 2 TcÞ=TR in the range 0.05 # 1 # 1. Results show that Boussinesq-approximation is not
sufficient to simulate natural convective flow when the difference between Th and Tc is high and close
to the reference state temperature. The effects of the other fluids properties other than density can be
disregarded in computation without significant loss of accuracy. Combined fluid properties have very
strong effects on the heat transfer, heat function fields and profiles.

Originality/value – The results of this study will serve as baseline information to designers of heat
transfer or process equipment in which fluid at very high temperature occurs.
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Nomenclature
cp ¼ specific heat capacity of fluid (J/kg K)
g ¼ acceleration due to gravity (m/s2)
Ga ¼ Galilei number
Gr ¼ Grashof number
h ¼ enclosure height (m)
H ¼ heat function (W/m)
J ¼ ratio of TR and ðTh 2 TcÞ
l ¼ enclosure length (m)
M ¼ number of vertical grid lines
N ¼ number of horizontal grid lines
Nu ¼ Nusselt number, Q=lDT
p ¼ pressure (N/m2)
Pr ¼ Prandtl number
Q ¼ overall heat transfer rate (W)
Ra ¼ Rayleigh number

T ¼ temperature (K)
u ¼ horizontal velocity (m/s)
v ¼ vertical velocity (m/s)
x ¼ horizontal coordinate (m)
y ¼ vertical coordinate (m)

Abbreviations
BA ¼ Boussinesq-approximation
VFP ¼ variable fluid properties

Greek alphabet
a ¼ fluid thermal diffusivity (m2/s)
b ¼ volumetric coefficient of thermal

expansion (/K)
1 ¼ expansion parameter
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l ¼ thermal conductivity of
fluid (W/m K)

m ¼ viscosity (Pa s)
y ¼ kinematic viscosity (m2/s)
r ¼ density (kg/m3)
c ¼ stream function (m2/s)
v ¼ vorticity (m/s)
V ¼ relaxation factor

f ¼ primary variable

Sub- and superscripts
c ¼ cold wall
h ¼ hot wall
R ¼ reference state condition
* ¼ variables in their raw forms
n ¼ computation step

1. Introduction
Natural convective flow and heat transfer had been intensively investigated in the past
few decades by many researchers. This is due largely to its direct relevance in a
variety of applications in nature and in engineering practices, ranging from growth of
crystals, solar collection performance, fire and smokes spread in rooms and
compartments to large-scale geophysical phenomena. The investigations had been
carried out theoretically (Cormack et al., 1974), numerically (De Vahl Davis, 1983;
Miyamoto et al., 1989; Chen et al., 1990; Kelkar and Patankar, 1990; Lee, 1999; Mota
et al., 2000) and experimentally (Inaba and Fukuda, 1984; Ivey and Hamblin, 1989). The
basis for the numerical investigation is the solution of the complete Navier-Stokes and
the energy equations. It was assumed in all the numerical computations of
natural convection that all the fluid properties are constant except for the density
changes with temperature in the buoyancy term of the equation of motion. This
assumption leads to the so-called Boussineq-approximation. The approximation is the
almost universally adopted method in the theoretical calculations of natural
convection. But this approximation is valid for small temperature differences only
(Zhong et al., 1985).

The investigation of heat transfer by natural convection rests on the premise that on
one side the approximation gives good results for some definite areas. On the other
side, the solution of the complete equations with variable fluid properties is inhibited
by the computer capacity and the available numerical methods. But the complete
Navier-Stokes equations are not only connected through the density with the energy
equation, but also through the temperature dependent transport properties such as
viscosity, thermal conductivity and specific heat capacity. The transport properties for
liquids vary appreciably for a small change in temperature. For example, the dynamic
viscosity of water reduces by about 50 per cent for a temperature rise from 10 to 408C
(Thielemann, 1985; De Souza et al., 2003). The dynamic viscosity of oils is essentially
strongly temperature dependent. Thielemann (1985) stated that by high temperature
difference, there is a significant deviation of heat transfer and especially of the flow
pattern of the Boussineq-approximation from the solution of variable fluid properties.
Merker and Mey (1987) and Hong (1992) investigated natural convection in flat
rectangular enclosures filled with air, oil or water. The effects of temperature
dependent fluid properties were thereby considered. They hinted that the choice of the
reference temperature plays an important role on the flow pattern when variable fluid
properties are considered as compared with the results for Boussineq-approximation.
The focus of attention in these works was on the study of the effects of Rayleigh
number, Prandtl number, aspect ratio and the cavity inclination angles on the flow
patterns, isotherms, and on the convective heat transfer. Isotherm was, however,
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adjudged not to give good representation of the energy field in convection dominated
fields (Hong, 1992).

Kimura and Bejan (1983) proposed the use of heatlines for the visualization of the
heat transfer by convection. They tested their proposed heat function model to
visualize convective heat transfer in a rectangular enclosures bounded by two
isothermal vertical and two adiabatic horizontal walls. Bello-Ochende (1986, 1988)
extended the pioneering work of Kimura and Bejan by adding a vortex term to the heat
function model, which was supposedly omitted by the pioneers. Besides these two
known work on heat function and a small account by Griebel et al. (1998), there is no
known comprehensive work on the subject matter. The effects of variation of the fluid
properties on heat function and thus on energy trajectory in convective field have not
been considered to date.

The purpose of this work is therefore to investigate the effects of temperature
dependent fluid properties, namely density, viscosity, thermal conductivity and
specific heat capacity on free convection and heat function. The effects of Rayleigh and
Prandtl numbers on energy trajectory are thereby investigated.

2. The physical system and the mathematical models
Figure 1 shows a schematic diagram of a two-dimensional enclosure used in this study
for the investigation of the effects of variable fluid properties on the energy trajectory
in convective flow fields. This configuration together with the prescribed boundary
conditions is used to describe a classical problem for the study of free convective flow
in rectangular enclosure (Kimura and Bejan, 1983). In this configuration, the enclosure
is conceived such that it is bounded by two end walls that are held at constant but
different temperatures, Th and Tc, Th . Tc; and by the lower and the upper walls that
are adiabatic. The dimension of the cavity is infinitesimally long in the z-direction so
that only velocity and temperature changes in the plane need to be computed.

Figure 1.
The definition of control
field with the normalized
boundary constraints and
the coordinate axes
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The gravitational force acts in a direction opposite the y-axis. The flow is assumed
laminar and stationary, and the fluid Newtonian.

The fundamental equations for the mathematical description of the free convective
flow are the continuity, Navier-Stokes and energy equations. These equations are
respective expressions for conservation of mass, momentum and energy. Thielemann
(1985) stated that the dissipation energy and the pressure term in the energy equation
are very small in comparison with other terms. These are thus neglected in this work.
The basic equations for two-dimensional steady flow in Cartesian coordinates can be
written as follows (Schlichting and Gersten, 2000).

The equation of continuity:

›r*u*

›x*
þ

›r*v*

›y*
¼ 0 ð1Þ

The equation of motion in the x- and y-directions:

r* u*
›u*

›x*
þ v*

›u*

›y*

� �
¼ 2

›p*

›x*
þ

›txx

›x*
þ

›tyx

›y*

� �
ð2Þ

r* u*
›v*

›x*
þ v*

›v*

›y*

� �
¼ 2

›p*

›y*
2 r*g þ

›txy

›x*
þ

›tyy

›y*

� �
ð3Þ

with

txx ¼ m* 2
›u*

›x*
2

2

3

›u*

›x*
þ

›v*

›y*

� �� �

tyy ¼ m* 2
›v*

›y*
2

2

3

›u*

›x*
þ

›v*

›y*

� �� �

txy ¼ tyx ¼ m*
›u*

›y*
þ

›v*

›x*

� �

The thermal energy equation:

u*
›T*

›x*
þ v*

›T*

›y*
¼

1

r*c*p

›

›x*
l*

›T*

›x*

� �
þ

›

›y*
l*

›T*

›y*

� �� �
ð4Þ

The variables u*, v *, p*, r* and T* are the fluid velocity components in the x*- and
y*-directions, pressure, density, and temperature, respectively. The parameter l*, m*

and g are, respectively, the coefficient of thermal conductivity, dynamic viscosity and
gravitational acceleration.

Kimura and Bejan adjudged the use of heatlines for the visualization of the energy
trajectory as standard. A heatline describes the course of heat energy in a flowing fluid
as given by a line of constant heat function. The function is described such that the net
flow of energy by thermal diffusion and enthalpy vanishes across a line of constant

Temperature
dependent fluid

properties

243



heat function. Consequently, the level curves of heat function run parallel to the local
heat flux.

Heat function is defined for the net heat transport in the x*-direction as:

›H*

›y*
¼ r*c*p u*T* 2 l*

›T*

›x*
ð5Þ

and for the y*-direction as:

2
›H*

›x*
¼ r*c*p v*T* 2 l*

›T*

›y*
ð6Þ

Heat function describes how the fluid flow transports heat, and in an analogous fashion
stream function portrays the transport of mass by the flow. Streamlines are derived
from the stream function. A streamline is herein defined as a line of constant stream
function. These lines are used in practice for the presentation of the field of a flowing
fluid. The stream function satisfies the mass continuity equation for an incompressible
flow. This function is defined mathematically for the x*- and the y*-directions in
Cartesian coordinates as:

1

r*

›c*

›y*
¼ u* ; 2

1

r*

›c*

›x*
¼ v* ð7Þ

In addition to the above-mentioned equations, the equations for the temperature and
pressure dependence on density, viscosity, thermal conductivity and specific heat
capacity are also necessary. However, the pressure dependence of the fluid properties is
very small and can be neglected by the pressure difference that occurs in natural
convective flow (Thielemann, 1985). Several variable properties analyses for enclosure
flow are available in the literature. In this work the temperature dependence of the
variable properties is taken into account by expanding them into Taylor series fixed at
a certain reference state. By neglecting terms with order higher than two, one obtains,
e.g. for density (Gersten and Herwig, 1984):

r* ðT* Þ ¼ rR þ
›r*

›T*

� �
R

ðT* 2 TRÞ þ
1

2

›2r*

›T*2

� �
R

ðT* 2 TRÞ
2 þ · · · ð8Þ

The expression in equation (8) is cast into dimensionless form by making use of the
normalization properties of the second kind defined as follows:

Kr1 ¼
T*

r*

›r*

›T*

� �
R

ð9Þ

Kr2 ¼
T*2

r*

›2r*

›T*2

 !
R

; ð10Þ

an expansion parameter:

1 ¼
Th 2 Tc

TR
; ð11Þ
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and the dimensionless properties based on the reference temperature TR:

r ¼
r*

rR
; m ¼

m*

mR
; l ¼

l*

lR
; cp ¼

c*p
cpR

ð12Þ

By setting equations (9)-(12) in equation (8) results in:

r ¼
r*

rR
¼ 1 þ 1Kr1T þ

1

2
Kr21

2T 2 ð13Þ

In a similar way, the expressions for the temperature dependence of other properties
namely dynamic viscosity, thermal conductivity and specific heat capacity are
obtained:

m ¼
m*

mR
¼ 1 þ 1Km1T þ

1

2
Km21

2T 2 ð14Þ

l ¼
l*

lR
¼ 1 þ 1Kl1T þ

1

2
Kl21

2T 2 ð15Þ

cp ¼
c*p
cpR

¼ 1 þ 1Kcp1T þ
1

2
Kcp21

2T 2 ð16Þ

The reference temperature TR is taken in this study as the arithmetic mean between the
end wall temperatures:

TR ¼
Tc þ Th

2
ð17Þ

The constants K in equations (13)-(16) are comparable with the Prandtl number and are
dependent on the reference states (TR, pR). The values for these constants are presented
in Table I for air, water and oil (shell voluta 919) according to Schlichting and Gersten
(2000) and Gersten and Herwig (1984).

3. Method of analysis and the solution technique
The task now is to seek the solution of the governing equations (1)-(6) together with the
temperature dependent fluid properties defined in equations (13)-(16). Till date, there is
no close form solution of these equations. Theoretical solutions to the complete
Navier-Stokes equations are only possible for limited cases, i.e. for creeping, potential
and boundary layer flows. The advent of digital computer has, however, enabled an
easy numerical solution of these equations. In this work, the model equations are
solved numerically by using the finite difference method. This method has proved to be
very efficient in the solution of partial differential equations of different forms.

For the numerical solutions of the model equations, they are foremost cast into
dimensionless form. This becomes imperative for the sake of conveniences and to
enable the generalisation of the governing equations so that they could be applied to a
wide range of operating parameters. The following non-dimensional variables are thus
introduced defined according to Hong (1992):
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The temperature-
dependent physical
properties of air, water
and oil at reference
pressure pR ¼ 1 bar
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x ¼
x*

l
; y ¼

y*

l
; u ¼

u*

ðmR=lrRÞ
; v ¼

v*

ðmR=lrRÞ
T ¼

ðT* 2 TRÞ

ðTh 2 TcÞ
;

c ¼
c*

mR=rR
; v ¼

v*

ðmR=l 2rRÞ
; H ¼

H*

lRðTh 2 TcÞ

ð18Þ

In the numerical solutions of the Navier-Stokes equations one possibility is to introduce
stream function and vorticity. This possibility is a potent tool for solving especially
two-dimensional flow equations and heat transfer problems. The method helps by
taking care of the difficulty associated in the determination of pressure by eliminating
the pressure derivative from the equations. The elimination of the pressure terms from
equations (2) and (3) is done by cross-differentiating each term of the equations and
then by subtracting the resulting equations one from the other. The resulting
expression is simplified with the continuity equation (1) and the non-dimensional
parameters defined in equation (18). The equation obtained is the dimensionless
vorticity transport equation:

›ðruvÞ

›x
þ

›ðrvvÞ

›y
þ

›r

›x
u
›u

›y
þ v

›v

›y

� �
2

›r

›y
u
›u

›x
þ v

›v

›x

� �

¼ 2Ga
›r

›x
þ m

›2v

›x 2
þ

›2v

›y 2

� �

þ 2
›m

›x

›2v

›x 2
þ

›2v

›y 2

� �
2

›m

›y

›2u

›x 2
þ

›2u

›y 2

� �
þ

›2m

›x›y

›v

›y
2

›u

›x

� �� �

þ
›2m

›x 2
2

›2m

›y 2

� �
›u

›y
þ

›v

›x

� �
; ð19Þ

where v is called the vorticity and is defined as:

v ¼
›v

›x
2

›u

›y
ð20Þ

By substituting equation (7) into equation (20) and reducing the resulting expression
with the dimensionless variables defined in equation (18), the non-dimensional stream
function equation is obtained:

2v ¼
›

›x

1

r

›c

›x

� �
þ

›

›y

1

r

›c

›y

� �
ð21Þ

Equation (4) is simplified by using the nominalization parameters defined in equation
(18) to derive the normalized energy transport equation:

›ðruTÞ

›x
þ

›ðrvTÞ

›y
¼

1

Pr

›

›x
l
›T

›x

� �
þ

›

›y
l
›T

›y

� �� �
ð22Þ

The heat function equation is derived from equations (5) and (6) by
cross-differentiating each member of the equations, subtracting one from the other
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and then by reducing the resulting expression with the nominalization parameters to
give:

›2H

›x 2
þ

›2H

›y 2
¼ Prð1 þ J Þ

›ðrcpuTÞ

›y
2

›ðrcpvTÞ

›x

� �
þ

›

›x
l
›T

›y

� �
2

›

›y
l
›T

›x

� �
ð23Þ

In the above equations Ga denotes the Galilei number defined in terms of the fluid
properties and the cavity dimension as:

Ga ¼
gr2

Rl
3

m2
R

Galilei number is related with the Grashof number Gr through the expression:

Gr ¼ GabRðTh 2 TcÞ

where bR is the volumetric coefficient of thermal expansion. The product of Prandtl
number Pr ¼ y=a ¼ cpR

mR=lR and the Grashof number Gr ¼ gl 3bðTh 2 TcÞ=y
2

gives the Rayleigh number Ra, which is the most common dimensionless number in
use in the study of natural convection. In equation (23) the variable J is defined as
J ¼ TR=ðTh 2 TcÞ $ 0; which is the inverse of the expansion parameter.

The flow patterns, the energy trajectory and the energy transfer rate depend
mainly on the imposed boundary conditions. So, to completely characterise the flow,
boundary conditions must be given. The energy and the momentum transport in the
investigated enclosure are subject to the following boundary conditions in
non-dimensional form:

u ¼ v ¼ 0;
›T

›y
¼ 0; at y ¼ ð0; 1Þ; 0 # x # 1; v – 0

u ¼ v ¼ 0; T ¼ 1 at x ¼ 0; 0 # y # 1; v – 0

u ¼ v ¼ 0; T ¼ 0; at x ¼ 1; 0 # y # 1; v – 0

ð24Þ

The vorticity at the boundary is not zero but it assumes a definite value. This value can
be computed from the first derivative of velocity or the second derivative of the stream
function (Roache, 1976):

vw ¼ 2
2ðcwþ1 2 cwÞ

rwDn 2
; ð25Þ

where the subscripts w and ðwþ 1Þ; respectively, represent the grid point on the wall
and the first grid point away from the wall, and Dn is the perpendicular distance
between the wall and the first grid point normal to the wall. The numerical simulation
by using the vorticity boundary condition as spelt out by equation (25) is essentially
more stable as, would be with the boundary condition by Chow and Tien (1978):

vw ¼ 2
8cwþ1 2 7cw 2 cwþ2

2rwDn 2
ð26Þ
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The boundary conditions for heat function are derived directly from equations (5) and
(6) which are the basic definitions of the function:

H ¼

Z y

0

2
›T

›x

����
x¼0

� �
dy and

›H

›x
¼ 0 at x ¼ 0 and 1

H ¼ 0 and
›H

›y
¼ 2

›T

›x
at y ¼ 0

H ¼ Nu and
›H

›y
¼ 2

›T

›x
at y ¼ 1

ð27Þ

Nu in equation (27) depicts the Nusselt number, which is used to determine the effect of
fluid flow on the heat transfer. The value of the Nusselt number is computed after the
flow, the temperature and the energy fields had been determined. The overall
conduction-reference Nusselt number is evaluated by computing the net heat transfer
Q entering the system through the heated portion of the driving wall and dividing it by
the heat transfer by conduction:

Nu ¼
Q

lDT
¼ 2

lh

lR

Z 1

0

›T

›x

� �
x¼0

dy ð28Þ

In equation (28) l is the thermal conductivity of the fluid in the enclosure.
The dimensionless governing equations (19)-(23) together with the boundary

conditions defined in equations (24)-(27) were discretized by using the finite difference
formulation. Details on this method can be found in the book from Tannehill et al.
(1997). For the purpose of the discretization of the governing equations, the control
surface was divided into M grid divisions of length Dx in the x-direction and N grid
division of Dy in the y-direction.

Central difference scheme was used to discretize all but the convective non-linear
terms of the governing equations. The central difference approximation is second order
accurate, but it does not represent the physics of the convective transport correctly and
also leads to instabilities. For the purpose of the discretization of the convective
non-linear terms, the energy, vorticity transport and the heat function equations are
foremost transformed into their conservative form. Upwind difference scheme is then
used to discretize the convective non-linear terms of the equations. This scheme is more
stable and leads to better convergence of the computation process. In upwind difference
scheme the direction of the flow is considered. A high stability of the solution of the
numerical computation is achieved by using the alternating-direct implicit, ADI method.

The discretization of the flow fields and the governing equations results in a
number of simultaneous linear equations corresponding to the number of nodal points.
The solution of the linear equations is done iteratively by employing the successive
over relaxation method. This method enhances the rate of convergence. A generalized
expression for the solution of the governing equations is:

Fnþ1
i; j ¼ ð12VÞFn

i; jþV Ai; jF
n
iþ1; jþBi; jF

nþ1
i21; jþCi; jF

n
i; jþ1 þDi; jF

nþ1
i; j21 þEi; j

h i
ð29Þ

In the above equation, F stands for the temperature T, stream function c, vorticity v
or heat function H at every nodal point. The definitions of the functions A, B, C, D and
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E depend on the equation being solved. The indices i and j determine the nodal point, n
stands for the iteration’s level, and V is called the relaxation factor. It was found out by
numerical experiments and in close agreement with the results of Hong (1992) and
Thielemann (1985) that for the solution of the energy transport equation a value of V in
the range 0.8 and 1.2 is essential for numerical stability. For the stream function
equation the value of V in the range 0.8 and 1.8 should be chosen, and the value of V
between 0.01 and 0.5 for the vorticity transport and heat function equations. For any of
theses primary variables a higher value of V is required for lower Rayleigh number
and lower value of V for higher Rayleigh number.

At the beginning of numerical simulations, the initial values for temperature,
stream function, vorticity, velocity components and the heat function at all the
interior grid points are set to zero. The velocity components are obtained in
dimensionless form from equation (7). The computation algorithm is such that the
fluid thermal and transport properties are foremost-determined at all the inner nodal
points. This is followed by the computation of temperature, vorticity, stream
function and the heat function at all the inner nodes and boundaries. The iteration
is carried out until the following convergence criterion is satisfied at every internal
grid point:

XN
j¼2

XM
i¼2

Fnþ1
i;j 2Fn

i;j

��� ���
XN
j¼2

XM
i¼2

Fn
i;j

��� ���
# d ð30Þ

where F is the primary variable being tested, and n denotes the number of iteration
steps. Equation (28) was integrated numerically using the Simpson rule after the
final temperature field was obtained to compute the overall Nusselt number.

4. Discussion of numerically generated results
The results of the numerical analysis developed in this work are presented in the form
of thermal and heat function fields, and in form of the heat function profiles for Prandtl
number in the range 0.01 and 450 and Rayleigh number ranging from 103 to 106. A
number of numerical computations were carried out to determine among others the
accuracy and the stability of the results with the number of the grid points. The
accuracy of the numerically generated results was found to depend strongly on the
number of nodal points. With a grid system of 41 £ 41 nodal points, the numerical
results were found to agree closely with many benchmark results. The results were
considered for square enclosures only.

In order to ascertain the validity of the code used in this work, preliminary runs
were made for several test cases for Boussinesq-approximation’s problem. Table II
compares steady-state Nusselt number obtained using the developed code with those
reported by Hong (1992). The comparison covers a large range of Rayleigh and Prandtl
numbers. It can be seen from the table that for all Prandtl numbers at low Rayleigh
number, i.e. Ra ¼ 103, Nu < 1, depicting a quasi-pure conductive heat transfer. The
conductive heat transfer rate as indicated by the Nusselt number increases with the
increase in Prandtl and Rayleigh numbers. Comparison of the results of the present
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simulations with that of Hongs shows a very close agreement in the value of Nusselt
number computed with the deviation of order ,0.3 per cent. Further validation of the
results done by comparing the present computed Nusselt numbers with the correlation
from Thielemann (1985) and Merker and Mey (1987) shows a very good agreement. By
monitoring the convergence criterion for all the fields during the running of the
programme, it was observed that a slight numerical instability in computation set in
when the Prandtl number is smaller than 0.001 and the Rayleigh number is high (e.g. of
order $106) due to turbulence in the flow.

The effects of the combined variables thermodynamic and transport fluid
properties on the Nusselt number were also investigated. The computation is done
for air with Prandtl number of 0.7 at a reference temperature of 773 K. The results
as shown in Figure 2 reveal that the Nusselt number depends very strongly on the
expansion parameter. An increase in this parameter leads to a corresponding
increase in Nusselt number. These curves show that Nusselt number increase with

Nusselt number, Nu
Ra ¼ 103 Ra ¼ 105 Ra ¼ 106

Pr This work Hong (1992) This work Hong (1992) This work Hong (1992)

0.01 1.05970 1.05190 2.60512 2.59570 4.90408 4.64310
0.10 1.11967 1.11510 3.88174 3.82780 7.48337 7.32690
0.70 1.13290 1.13320 4.62014 4.58850 9.37705 9.28300
1.00 1.13352 1.13410 4.71013 4.67780 9.57108 9.48510
7.00 1.13473 1.13610 4.86788 4.83750 9.93769 9.85130
10.0 1.13479 1.13620 4.87167 4.84130 9.94940 9.86180
100 1.13491 1.13640 4.87742 4.84670 9.96913 9.87810

Table II.
Comparison of the

Nusselt number, Nu with
the numerical results

from Hong (1992)

Figure 2.
Comparison of the

convective heat transfers
across a two-dimensional

square enclosure for
problem with Boussinesq-

approximation and
combined variable fluid

properties
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Rayleigh number. This result is consistent with the results of number of previous
investigations (Inaba and Fukuda, 1984; Ivey and Hamblin, 1989; Lee, 1999). A
comparison is drawn between the Nusselt number computed for
Boussinesq-approximation’s problem and that computed by allowing the
variation of the fluid properties with temperature. It can be seen that the
Nusselt number computed for Boussinesq-approximation’s problem is smaller for
all the range of Rayleigh number considered than those computed for the
combined variable fluid properties. This signifies the fact that
Boussinesq-approximation cannot be used to accurately simulate fluid flow at
high temperature. It can also be seen that the Nusselt number increases with the
expansion parameter. This is to be expected since an increase in the expansion
parameter means that the temperature difference between the hot and the cold
walls has increased. Zhong et al. (1985) stated that the BA should be adequate for
1 # 0.10, where 1 was defined as 1 ¼ ðTh 2 TcÞ=Tc: The present results show
that the expansion parameter should be far ,0.05 for the flow to satisfy the BA.

For visual interpretation of the results, the temperature and the heat function matrix
were converted into isotherms and heatline plots, respectively. These are shown in
Figure 3 for air with Prandtl number of 0.7 and Rayleigh number of 103. The computed
temperature field for the Boussinesq-approximation (Figure 3(a)) compares favourably
well with the results of previous investigations (Kimura and Bejan, 1983; Griebel et al.,
1998). At this Rayleigh number conductive heat transfer predominates. Thus the
isotherms (Figure 3(a)) and heatlines (Figure 3(b)) are slightly influenced by convection.
The heatlines and the isotherms computed for the same Rayleigh and Prandtl numbers
when the combined variable fluid properties are considered are as reflected in
Figure 3(c) and (d). These fields are seen to deviate strongly from those computed for
BA. It can be seen in Figure 3(c) that the temperature gradient dT=dx near both cold
and hot vertical walls is very high as compared with that of Figure 3(a). Consequently,
the heatlines shown in Figure 3(d) deform very sharply than that of Figure 3(b). This
probably explained the perceptible non-fulfilment of the normal boundary condition by
the heat function on both vertical walls, although zero error in the software used to plot
the field cannot be ruled out. This strong deviation can be justified by the fact that at
the reference temperature in question (T ¼ 773 K), the molecules of the fluid will be at
very high random motion. The tempo of heat communication in the enclosure through
convection will thus be very high. These results further buttress the fact that the state
of the fluid in relation to temperature can only be reliably simulated when the effect of
the variable fluid properties are considered.

To quantitatively estimate the degree of the effect of the variable fluid properties on
heatlines, heat function both at the midplane (x ¼ 0.5) and midheight ( y ¼ 0.5) is
plotted against the transverse and longitudinal coordinates, respectively. These
profiles are shown in Figures 4-8 for various flow conditions. Figure 4 is computed for
Pr ¼ 0.7 and Ra ¼ 103 at a reference temperature of 773. The profiles for both BA and
the combined VFP are presented on the same axes. The diagram shows that the heat
function profiles along the midplane for the two cases (BA and VFP) start with a value
of zero at y ¼ 0. While the heat function for the BA increases steadily with the
longitudinal coordinate, it foremost reduces for the VFP before rising. In the two cases,
the values of the heat function at y ¼ 1 correspond to their Nusselt numbers. The curve
along the transverse coordinate has a quasi-parabolic profile, falling from a particular
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value at x ¼ 0 to a minimum heat function at a point about x ¼ 0.5 and rising back to
the starting value at point x ¼ 1. The curve for BA has a smaller gradient than that of
VFP. This signifies a great effect of variable fluid properties on the heat function
profiles.

An increase in the Rayleigh number results in changes in the gradient of the curves
along the transverse and the longitudinal coordinates. The change, which becomes
obvious when Figure 4 is compared with Figure 5, is the consequence of the increase in
the flow buoyancy force. The overall effect of the variable fluid properties is to reduce
the velocity in the wall region, but to increase it in the core region.

Figure 6 is shown to enable a comparison of the effects of the Prandtl number on
the heat function profiles in the two coordinates. The curves are prepared at
Ra ¼ 105 for air with Pr ¼ 0.74, water (Pr ¼ 7.0) and shell oil (Pr ¼ 412) at a
reference temperature TR ¼ 293 K, and liquid sodium (Pr ¼ 0.0074) at TR ¼ 473 K.
From the heat function profiles for liquid sodium, it can be seen that the effect of
convection on the fields is very weak. It should be noted that Prandtl number is a

Figure 3.
The temperature and the

heat function fields,
respectively, for (a) and (b)

Boussinesq-
approximation, and (c) and
(d) combined variable fluid

properties in an air
enclosed cavity at

TR ¼ 773 K for Ra ¼ 103,
Pr ¼ 0.7 and 1 ¼ 0.1
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dependent fluid
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measure of the fluid material property, and thus varies from fluid to fluid. It is a
measure of the relative importance of heat conduction and viscosity of fluid. This
number is defined as the ratio of fluid momentum to thermal diffusivity. So Pr ! 1
could result from very small momentum diffusivity (very weak convection) or very
high thermal diffusivity. The effect of convection on heat function is appreciable for
Pr ¼ 0.74 resulting in high gradients of the profiles at both vertical walls, and small
gradient in the inner space. For Pr ¼ 7 and 412, the heat function curves collapse to
a single curve near both vertical walls. In the inner space, the heat transfer rate for
shell oil is higher than that for water. The difference in the heat transfer rate is due
to the difference in the Prandtl number.

Figure 7 shows the curves of the heat function against the transverse and the
longitudinal coordinates. The computation was done with water as the enclosed fluid
at a reference temperature T ¼ 293, Ra ¼ 103 and Pr ¼ 7. Other variable used in the

Figure 4.
The transverse and the
longitudinal heat function
profiles in a square
enclosure filled with air at
a reference temperature
TR ¼ 773 K for Ra ¼ 103,
Pr ¼ 0.7 and 1 ¼ 0.1
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preparation of the curves is the expansion parameter 1 ¼ 0.05, 0.1 and 1.0. The profiles
reveal that the heat function along the midplane and the midheight is appreciably
influenced by changes in the expansion parameter. Comparing the curve for each of the
expansion parameter with one another, it can be seen that 1 ¼ 0.05 has the least effect
while 1 ¼ 1.0 has the greatest. The shape of the heat function curves along either
coordinate change with the expansion parameter. The curve for 1 ¼ 1.0 along the
transverse coordinate has a quasi-parabolic profile.

Each of the fluid properties was varied separately to quantitatively determine what
the relative contributions of each should be when all were allowed to vary
simultaneously. The analysis was done with air as the considered fluid at reference
temperature T ¼ 773, Ra ¼ 103 and Pr ¼ 0.7. Figure 8 shows that the heat function
along the transverse coordinate is hardly influence by variable viscosity, thermal
conductivity and specific heat capacity. The heat function curve for the variable

Figure 5.
The transverse and the

longitudinal heat function
profiles in a square

enclosure filled with air at
a reference temperature

TR ¼ 773 K for Ra ¼ 105,
Pr ¼ 0.7 and 1 ¼ 0.1
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density has a parabolic profile showing a strong influence of the separate variable
density. A comparison of the profiles for the transverse and the longitudinal
coordinates reveals that an appreciable variation of the heat function occurs along the
longitudinal coordinate. The curves reflect that the heat function for both variable
specific heat capacity and viscosity varies linearly with equal magnitude along the
coordinate. The values of heat function along the coordinate for variable thermal
conductivity are slightly smaller. The profile also shows a strong effect of the variable
density on the heat function along the longitudinal coordinate. The results, which are
in close agreement with those of Mahony et al. (1986), are plausible because the
convective flow itself is induced by variation in density with temperature changes.
Besides, density appears in all the governing equations. Owing to the low velocity in
laminar natural convection, variable viscosity is not expected to significantly influence
the heat function profiles.

Figure 6.
Comparison of the effect of
Prandtl number on the
heat function profiles for
Ra ¼ 105 at a reference
temperature TR ¼ 293 K
and 1 ¼ 0.1
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5. Conclusions
Heat function formulation of the natural convective flow under the consideration of the
temperature dependent density, viscosity and thermal conductivity and specific heat
capacity was examined in this present work. The investigations were conducted
numerically by using a finite-difference scheme. Upwind difference scheme is thereby
used to discretize the convective non-linear terms of the equations. A high stability of
the numerical computation is achieved by using the alternating-direct implicit, ADI
method. The results of the work where compared where possible with those of other
investigations, and agreements in such case were good. It was found that the heat
transfer, the heat function fields and profile are dependent on the Rayleigh number,
Prandtl number and the expansion parameter in a very complex way. Both the heat
function and the temperature fields for VFP were seen to deviate from those of BA.
Based on the results of this work, the following conclusions can be made:

Figure 7.
The effects of the

expansion parameter on
the heat function profile in
a water enclosed cavity at

a reference temperature
TR ¼ 293 K, Pr ¼ 7.0 and

Ra ¼ 103
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. the Boussinesq-approximation is not sufficient to simulate natural convective
flow when the difference between Th and Tc is high and close to the reference
state temperature; and

. the effects of the other fluids properties other than density can be neglected in
computation without significant loss of accuracy.
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pp. 25-35.

Griebel, M., Dornseifer, T. and Neunhoeffer, T. (1998), Numerical Simulation in Fluid Dynamics:
A Practical Introduction, SIAM, Philadelphia, PA.

Hong, J. (1992), “Freie Konvektion in rechteckigen Hohlräumen und horizontalen Ringspalten
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